REGULATION DE LA PRESSION ARTERIELLE

Auteur: Dr.M.K.Bourahli

Faculté de Médecine Constantine Université Mentouri 3
Service de Physiologie et des Explorations Fonctionnelles CHU Constantine

I. DEFINITION - GENERALITES :

La pression artérielle (PA) est une force exercée sur les parois artérielles par le sang éjecté du cœur.
Ceci développe une tension qui s'exerce sur les parois de ces artères.

I. DEFINITION - GENERALITES :

Elle dépend :
> du rythme cardiaque,
> de la force de contraction cardiaque,
> ainsi que des résistances qui s'opposent à l'écoulement du sang

I. DEFINITION - GENERALITES :

La PA, grandeur hémodynamique à 2 valeurs:

I. DEFINITION - GENERALITES:

> PAS:
La pression qui règne dans l'aorte durant la phase d'éjection jusqu'à une valeur maximale.
> PAD:
Correspond à la pression qui règne dans les vaisseaux durant la diastole et la phase de mise en tension (valve aortique fermée) jusqu'à une valeur minimale.

I. DEFINITION - GENERALITES:

> Pression différentielle:
PAS - PAD constitue la pression différentielle, elle est fonction du VES et de la compliance des artères.
> Pression moyenne:
La PA moyenne efficace ou pression motrice représente la pression moyenne assurée par chaque pulsation cardiaque, elle est constamment autorégulée.

Sa valeur chez le jeune adulte sain:
~ 96 à 100 mm Hg

$$
\approx \mathrm{PAM}=(\mathrm{PS}+2 \mathrm{PD}) / 3
$$

Variations des pressions artérielles systolique, diastolique et moyenne en fonction de l'âge. Les zones pointillées figurent les valeurs normales.

La Pression s'exprime donc par deux chiffres.
Valeur moyenne $=120 / 80 \mathrm{~mm} \mathrm{Hg}=$ pression dans l'artère du bras

I. DEFINITION - GENERALITES :

- Les mécanismes de régulation ont un pouvoir de correction qui intervient selon la durée et le niveau de la perturbation.
- Le débit cardiaque (Qc) et les résistances périphériques (RP) sont les principaux déterminants de la PA.

$$
\mathrm{PA}(\text { moyenne })=\mathrm{Qc} \times \mathrm{RP}
$$

II. BASES PHYSIQUES :

La différence de pression $\Delta \mathrm{P}$ entre 2 points espacés d'une distance L dans un cylindre rectiligne de rayon r est proportionnelle au débit

$$
\Delta \mathrm{P}=\mathrm{R} \cdot \mathrm{Q}
$$

II. BASES PHYSIQUES :

La loi de POISELIILLE

met en évidence les facteurs intervenants dans les modifications des paramètres régulant la résultante des fluctuations physiologiques de la PA agissant sur les pressions artérielles systolique diastolique et moyenne

$$
\mathrm{R}=\frac{8 \mathrm{~L} \mu}{\pi \mathrm{r}^{4}}
$$

III.MESURE DE LA PA ET VALEURS NORMALES SELON L'OMS

1. Mesure de Ia PA

a) Technique:

- Directe : cathétérisme
- Indirecte : Brassard
b) Conditions de mesure :

Dans les mêmes conditions après au moins 10 min de repos en position couchée ou assise

2. Valeurs selon l'OMS

Pression artérielle systolique < 140 mm Hg

Pression artérielle diastolique $\leq 85 \mathrm{~mm} \mathrm{Hg}$

Pression artérielle moyenne $\approx 100 \mathrm{~mm} \mathrm{Hg}$

I. DEFINITIONS

PA Normal	PAS mm Hg	PAD mm Hg	HTA	PAS mm Hg	PAD mm Hg
			Stade I	140-159	90-99
Optimale	<120	<80	Stade II	160-179	100-109
Normale	<130	<85	Stade III	180-210	110-120
Normale élevée	130-139	85-89	URGENCE	> 210	>120

IV. REGULATION DE LA PRESSION ARTERIELLE

1. Auto régulation de base

a) Myogène: contrôle spontané du diamètre des vaisseaux
b) Métabolique : contrôle local par des substances chimiques
> un apport métabolique insuffisant \Rightarrow vasodilatation locale afin d'améliorer l'apport nutritif.
> un débit sanguin excessif \Rightarrow vasoconstriction locale. Exemple :

Hémorragie + vasodilatation \Rightarrow > PA

2. RÉGULATION IMMÉDIATE a) Mécanismes nerveux

REGULATION NERVEUSE PAR BAROREFLEXE

- Barorécepteurs ou Mécanorécepteurs: Terminaisons nerveuses localisées au niveau de la crosse de l'aorte et du sinus carotidien .
- Activité permanente, adressant des influx nerveux modérateurs ou dépresseurs vers les centres de commandes
- Les Barorécepteurs sont saturables et adaptables.
- Agissent pour des valeurs de PA entres 50 et 225 mm Hg

REGULATION NERVEUSE PAR BAROREFLEXE

Lors de l' $\boldsymbol{\lambda}$ de la PA
\downarrow
Stimulation des barorécepteurs
Afférences
Nerf de Hering et de Ludwing-Cyon Trajet IX et X
Bulbe
Noyau du tractus solitaire

REGULATION NERVEUSE PAR BAROREFLEXE

Lors de la \searrow de la PA
\downarrow
Stimulation des barorécepteurs
Afférences
Nerf de Hering et de
Ludwing-Cyon
Trajet IX et X
Bulbe
Noyau du tractus solitaire
Libération du
Centre Vasomoteur
Inhibition du X

\nearrow PA aux valeurs antérieures (jusqu'à réapparition de l'inhibition)

REGULATION NERVEUSE PAR CHEMOREFLEXE

> Propre à la régulation de la respiration
$>$ Interviennent dans les situations d'urgence de chute de la PA (25-100 mm Hg)

REGULATION NERVEUSE PAR CHEMORECEPTEURS PERIPHERIQUES

Lors de la \searrow de la PA
\downarrow

Bulbe
Noyau du tractus solitaire

Libération du Centre Vasomoteur
Inhibition du X

b) Mécanisme humoraux hormonaux Système Rénine Angiotensine

- Vasoconstriction
- + de sécrétion d'aldostérone
- + de sécrétion de catécholamines
- + de sécrétion d'ADH
- + de Sympathicotonique central
- - de sécrétion de la rénine.

MECANISMES DE REGULATION DE LA SECRETION DE RENINE

Mécanisme rénale: Fait intervenir la baro-sensibilité et la variation des apports de sel

- L'フ̊de la tension des récepteurs juxta glomérulaires => - Rénine
- La \searrow de la tension des récépteurs juxta glomérulaires => + Rénine
- La \de la concentration de Na Cl détéctée par la macula densa => + Rénine
- L'フ de la concentration de Na Cl détectée par la macula Densa
=> - de Rénine

Mécanisme sympathique :

Il existe des terminaisons nerveuses surtout adrénergiques au niveau:
des cellules juxta glomérulaire des cellules musculaires lisses de l'artériole afférente glomérulaire.

La stimulation sympathique $=>1^{\prime} \nearrow$ sécrétion de Rénine.

NB : Il existe une action directe du système nerveux sympathique sur les reécepteurs 11 des cellules de l'artère afférente de l'AJG qui se comporte comme un barorécepteur.

Mécanismes humoraux Hormonaux

- Angiotensine II Feed Back (-)
- ADH
- Aldostérone
- ANF
- Potassium
- Sécrétion de Rénine

3. Régulation à long terme ou retardée

a) Mécanismes Hormonaux

> Aldostérone : Hormone Minéralocorticoïde secrétée par les glandes corticosurrénales

- Stimulée par l'angiotensine II
- Stimule l'augmentation de la réabsorption tubulaire distale du sodium.
- Exerce une action indirecte sur l'eau réabsorbée en potentialisant l'action de l'ADH .

> ADH ou Hormone Anti Diurétique

- Synthétisée au niveau des noyaux supra optique et para ventriculaire de l'hypothalamus.
- Deux types de récepteurs V1 V2 appelés volorécepteurs.
\checkmark Récepteurs V1: localisés au niveau des fibres musculaires vasculaires, leur action consiste en une vasoconstriction.
\checkmark Récepteurs V2 : localisés au niveau du rein,
r'ADH augmente :
La perméabilité à l'eau au niveau du canal collecteur
La réabsorption du Na cl au niveau de la branche ascendante de l'anse de Henlé
La vasoconstriction de l'artériole afférente au niveau du glomérule.

> ANF ou Facteur Atrial Natriurique :

- Sécrété par les cardiocytes humains (oreillettes)
- Agit par l'activation du GPMc (second messager)
- Récepteur de l'ANF identifiés au niveau du rein, des vaisseaux, du cerveau et du poumon.
- La sécrétion de l'ANF est stimulée par :
$\checkmark \quad$ La distension auriculaire
$\checkmark \quad$ L'augmentation de la concentration de la noradrénaline
\checkmark L'angiotensine II
\checkmark L'ADH
\checkmark L'endothéline.
\checkmark L'exercice musculaire.
\checkmark Action sur le système Cardio - vasculaire :
. L'action de l'ANF s'oppose à l'action de la NA , de la Dopamine , de l'ADH et de l'A II . L'ANF est vasodilatateur.
\checkmark Action sur le REIN : L'ANF $>$
. L'activité de la Rénine
- L'action de l'Aldostérone
. La sécrétion d'ADH $\Rightarrow \searrow$ de la Volémie

> Autres Hormones:

- Vasoconstrictrices

Endothéline, Sérotonine ,Thromboxanes A2

- Vasodilatatrices

Prostaglandines (PG) I2, E2, D2
NO oxyde nitrique ou EDRF (endothélium drived relaxing factor)
demi vie brève (quelques secondes) vasodilatateur synthétisé par l'endothélium
Nombreux facteurs stimule la synthése de NO

Mécaniques : forces de cisaillement +++ (shear stress) exercées par le flux sanguin sur l'endothélium «le flux maintient le flux» Chimiques : acétylcholine, histamine, bradykinines,VIP, substance P

Courbes : interventions chronologiques des différents systèmes de régulation

V. ADAPTATION DE LA PA DANS DIFFÉRENTES SITUATIONS PHYSIOLOGIQUES.

1. PASSAGE A L'ORTHOSTATISME

\nearrow Résistance périphérique + !
\nearrow de la PA

4. EXERCICE MUSCULAIRE

MERCI

Ref Bibliographiques :

- A . Fournier
- Ph. Meyer
- Arthur - C Guyton

